In a recital hall at the University of Connecticut in Storrs, a group of musicians got together to play Jean-Baptiste Singelée’s 1857 quartet for saxophones on some very old, very special instruments.
“This is an Adolphe Sax saxophone, from the mid-1860s,” says Robert Howe, who collects antique wind instruments. He’s also a reproductive endocrinologist and M.D. who’s now a Ph.D. candidate in music history and theory at UConn. About five years ago, it occurred to him that CT scans, X-rays and similar medical technology might also be used to examine the anatomies of antique oboes, flutes and saxophones.
“So when I received this,” Howe says, “it had had a mouthpiece with it, and the mouthpiece is early 20th century manufacture, and it plays in a particular way.”
But not at all the way Adolphe Sax — the man who invented and literally put the sax in the saxophone — heard the horn. The problem is that there are only about ten or so surviving original mouthpieces crafted by Sax. Howe wondered if the CT scan and X-ray data of these originals might help replicate new ones. Then he met Sina Shahbazmohamadi, director of imaging at UConn’s Center for Clean Energy Engineering, now an associate professor of mechanical engineering at Manhattan College in the Bronx.
“I thought, Why not transfer the data from the X-ray to the 3-D printer and copy those?” Shahbazmohamadi says. “There are several advantages to this, mainly that there would be no error during this transferring.”
The process also allowed Shahbazmohamadi to digitally remove dings, dents and cracks that existed in the originals. In addition, working from Howe’s tenor mouthpiece, Shahbazmohamadi was able to manipulate the data to create copies of alto, baritone and soprano mouthpieces that no longer existed.